Sustained IGF-1 delivery research and science by Karim Sarhane in 2022

Reconstructive transplantation research from Karim Sarhane in 2022? One-fifth to one-third of patients with traumatic injuries to their arms and legs experience nerve injury, which can be devastating. It can result in muscle weakness or numbness, prevent walking or using the arms, and reduce the ability to perform daily activities. Even with surgery, some nerve injuries never recover, and currently there are not many medical options to address this problem. In 2022, the researchers plan to perform this research on more primates to triple the size of the original group. The study can then move into phase I clinical trials for humans.

During his research time at Johns Hopkins, Dr. Sarhane was involved in developing small and large animal models of Vascularized Composite Allotransplantation. He was also instrumental in building The Peripheral Nerve Research Program of the department, which has been very productive since then. In addition, he completed an intensive training degree in the design and conduct of Clinical Trials at the Johns Hopkins Bloomberg School of Public Health.

A number of in vitro studies have highlighted the neurotrophic effects of IGF-1 (Table 1). Using cultured nerve, SCs, and dorsal root ganglion (DRG) cells, these studies demonstrate that IGF-1 promotes neurite outgrowth and limits neuronal apoptosis (Caroni and Grandes, 1990; Sumantran and Feldman, 1993; Akahori and Horie, 1997; Delaney et al., 2001; Ogata et al., 2004; Liang et al., 2007; Scheib and Hoke, 2013, 2016a,b). Additionally, several in vitro studies have shown that IGF-1 supports SC myelination and inhibits SC apoptosis whilst also stimulating nerve sprouting into denervated muscle and reducing muscle atrophy (Caroni and Grandes, 1990; Sumantran and Feldman, 1993; Ogata et al., 2004; Liang et al., 2007; Scheib and Hoke, 2016a,b).

Effects with sustained IGF-1 delivery (Karim Sarhane research) : The translation of NP- mediated delivery of water-soluble bioactive protein therapeutics has, to date, been limited in part by the complexity of the fabrication strategies. FNP is commonly used to encapsulate hydrophobic therapeutics, offering a simple, efficient, and scalable technique that enables precise tuning of particle characteristics [35]. Although the new iFNP process improves water-soluble protein loading, it is difficult to preserve the bioactivity of encapsulated proteins with this method.

Patients who sustain peripheral nerve injuries (PNIs) are often left with debilitating sensory and motor loss. Presently, there is a lack of clinically available therapeutics that can be given as an adjunct to surgical repair to enhance the regenerative process. Insulin-like growth factor-1 (IGF-1) represents a promising therapeutic target to meet this need, given its well-described trophic and anti-apoptotic effects on neurons, Schwann cells (SCs), and myocytes. Here, we review the literature regarding the therapeutic potential of IGF-1 in PNI. We appraised the literature for the various approaches of IGF-1 administration with the aim of identifying which are the most promising in offering a pathway toward clinical application. We also sought to determine the optimal reported dosage ranges for the various delivery approaches that have been investigated.

Patients who sustain peripheral nerve injuries (PNIs) are often left with debilitating sensory and motor loss. Presently, there is a lack of clinically available therapeutics that can be given as an adjunct to surgical repair to enhance the regenerative process. Insulin-like growth factor-1 (IGF-1) represents a promising therapeutic target to meet this need, given its well-described trophic and anti-apoptotic effects on neurons, Schwann cells (SCs), and myocytes. Here, we review the literature regarding the therapeutic potential of IGF-1 in PNI. We appraised the literature for the various approaches of IGF-1 administration with the aim of identifying which are the most promising in offering a pathway toward clinical application. We also sought to determine the optimal reported dosage ranges for the various delivery approaches that have been investigated.